Horizontal Green-Ampt flow integrated
get_greenampt_horiz_flow_integrated.RdThis function models saturated horizontal flow from a saturated surface into a soil profile. The assumptions are the same as in the Green-Ampt equation, except that there is no effect of gravity because all flow is assumed to be horizontal. The function further integrates over the vertical depth of a pit such that the hydraulic head at the boundary goes from (h_b - thickness) to h_b. The equation is:
$$F_v = \sqrt{\frac{8}{9} \Delta \theta K_{sat} t} \Big[(h_b - h_0)^{3/2} - (h_b - d - h_0)^{3/2} \Big]$$
Arguments
- theta_0
Soil volumetric water content prior to event
- theta_s
Soil porosity
- Ksat
Saturated hydraulic conductivity
- h_b
Hydraulic head at soil surface boundary
- h_0
Hydraulic head in soil prior to event
- times
Times to calculate total infiltration
- d
Depth over which to be integrated. If NULL, set to h_b
Examples
library(units)
theta_0 <- 0.2 # unitless
theta_s <- 0.35 # unitless
Ksat <- set_units(0.2, "cm/h") # length / time
h_b <- set_units(6, "ft") # hydraulic head (length)
h_0 <- set_units(-10, "cm") # hydraulic head (length)
Fv <- get_greenampt_horiz_flow_integrated(theta_0, theta_s,
Ksat, h_b, h_0, times = set_units(1,"hr"), d = NULL)
# Get infiltration over a 1 mm differential depth to compare with the point infiltration
Fv_dv <- get_greenampt_horiz_flow_integrated(theta_0, theta_s,
Ksat, h_b, h_0, times = set_units(1,"hr"), d = set_units(1, "mm"))
Fv_point <- Fv_dv/ set_units(1, "mm")
Fv_point
#> 34.01441 [mm]
# Get the point infiltration
F_point <- get_greenampt_horiz_flow(theta_0, theta_s, Ksat, h_b, h_0,
times = set_units(1,"hr")) %>% set_units("mm")
F_point
#> 34.01882 [mm]
# percent error:
(Fv_point - F_point) / F_point * 100
#> -0.01296255 [1]