Green-Ampt flow time
get_greenampt_time.RdThis function models the Green-Ampt equation, with a saturated surface flowing vertically downward into a soil profile. The assumptions are:
1. Homogeneous soil with initial water content (theta_0) 2. Constant pressure head (h_0) at the wetting front 3. Saturated soil above above wetting front 4. Continuous supply of water with constant head (h_b) at the soil surface boundary
With these assumptions, the amount of time for a particular infiltration depth (Fcum) can be calculated using Darcy's law as:
$$t = \frac{1}{K_{sat}}\Big[F - \Delta \theta (h_b - h_0) \ln (1 + \frac{F}{\Delta \theta (h_b - h_0)}) \Big]$$
Arguments
- theta_0
Soil volumetric water content prior to event
- theta_s
Soil porosity
- Fcum
cumulative infiltration in mm water equivalent
- Ksat
Saturated hydraulic conductivity
- h_b
Hydraulic head at soil surface boundary
- h_0
Hydraulic head in soil prior to event
Examples
library(units)
theta_0 <- 0.2 # unitless
theta_s <- 0.35 # unitless
Fcum <- set_units(1:20, "mm") # depth
Ksat <- set_units(0.2, "cm/h") # length / time
h_b <- set_units(6, "ft") # hydraulic head (length)
h_0 <- set_units(-10, "cm") # hydraulic head (length)
get_greenampt_time(theta_0, theta_s, Fcum, Ksat, h_b, h_0)
#> Units: [h]
#> [1] 0.0008621092 0.0034405339 0.0077235112 0.0136993988 0.0213566732
#> [6] 0.0306839281 0.0416698731 0.0543033317 0.0685732399 0.0844686452
#> [11] 0.1019787042 0.1210926820 0.1417999501 0.1640899855 0.1879523692
#> [16] 0.2133767845 0.2403530159 0.2688709481 0.2989205640 0.3304919441